Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
This paper documents our efforts in releasing the printed and audio book of the translation of the famous novel The Little Prince into the Chakavian dialect, as a computer-readable, AI-ready dataset, with the textual and the audio components of the two releases now aligned on the level of each written and spoken word. Our motivation for working on this release is multiple. The first one is our wish to preserve the highly valuable and specific content beyond the small editions of the printed and the audio book. With the dataset published in the CLARIN.SI repository, this content is from now on at the fingertips of any interested individual. The second motivation is to make the data available for various artificial-intelligence-related usage scenarios, such as the one we follow upon inside this paper already -- adapting the Whisper-large-v3 open automatic speech recognition model, with decent performance on standard Croatian, to Chakavian dialectal speech. We can happily report that with adapting the model, the word error rate on the selected test data has being reduced to a half, while we managed to remove up to two thirds of the error on character level. We envision many more usages of this dataset beyond the set of experiments we have already performed, both on tasks of artificial intelligence research and application, as well as dialectal research. The third motivation for this release is our hope that this, now highly structured dataset, will be transformed into a digital online edition of this work, allowing individuals beyond the research and technology communities to enjoy the beauty of the message of the little boy in the desert, told through the spectacular prism of the Chakavian dialect.
Accented speech remains a persistent challenge for automatic speech recognition (ASR), as most models are trained on data dominated by a few high-resource English varieties, leading to substantial performance degradation for other accents. Accent-agnostic approaches improve robustness yet struggle with heavily accented or unseen varieties, while accent-specific methods rely on limited and often noisy labels. We introduce Moe-Ctc, a Mixture-of-Experts architecture with intermediate CTC supervision that jointly promotes expert specialization and generalization. During training, accent-aware routing encourages experts to capture accent-specific patterns, which gradually transitions to label-free routing for inference. Each expert is equipped with its own CTC head to align routing with transcription quality, and a routing-augmented loss further stabilizes optimization. Experiments on the Mcv-Accent benchmark demonstrate consistent gains across both seen and unseen accents in low- and high-resource conditions, achieving up to 29.3% relative WER reduction over strong FastConformer baselines.
Multilingual automatic speech recognition (ASR) requires tokenization that efficiently covers many writing systems. Byte-level BPE (BBPE) using UTF-8 is widely adopted for its language-agnostic design and full Unicode coverage, but its variable-length encoding inflates token sequences for non-Latin scripts, such as Chinese, Japanese, and Korean (CJK). Longer sequences increase computational load and memory use. We propose BBPE16, a UTF-16-based BBPE tokenizer that represents most modern scripts with a uniform 2-byte code unit. BBPE16 preserves BBPE's language-agnostic properties while substantially improving cross-lingual token sharing. Across monolingual, bilingual, and trilingual ASR, and in a multilingual continual-learning setup, BBPE16 attains comparable or better accuracy; for Chinese, it reduces token counts by up to 10.4% and lowers decoding iterations by up to 10.3%. These reductions speed up fine-tuning and inference and decrease memory usage, making BBPE16 a practical tokenization choice for multilingual ASR.
The emergence of Large Audio-Language Models (LALMs) has advanced Speech Emotion Recognition (SER), but their size limits deployment in resource-constrained environments. While Knowledge Distillation is effective for LALM compression, existing methods remain underexplored in distilling the cross-modal projection module (Projector), and often struggle with alignment due to differences in feature dimensions. We propose PL-Distill, a KD framework that combines Projector-Level Distillation (PDist) to align audio embeddings and Logits-Level Distillation (LDist) to align output logits. PDist introduces Attention-weighted Centered Kernel Alignment, a novel approach we propose to highlight important time steps and address dimension mismatches. Meanwhile, LDist minimizes the Kullback-Leibler divergence between teacher and student logits from audio and text modalities. On IEMOCAP, RAVDESS, and SAVEE, PL-Distill compresses an 8.4B-parameter teacher to a compact 1.1B-parameter student, consistently outperforming the teacher, state-of-the-art pretrained models, and other KD baselines across all metrics.
The advancement of speech technology has predominantly favored high-resource languages, creating a significant digital divide for speakers of most Sub-Saharan African languages. To address this gap, we introduce WAXAL, a large-scale, openly accessible speech dataset for 21 languages representing over 100 million speakers. The collection consists of two main components: an Automated Speech Recognition (ASR) dataset containing approximately 1,250 hours of transcribed, natural speech from a diverse range of speakers, and a Text-to-Speech (TTS) dataset with over 180 hours of high-quality, single-speaker recordings reading phonetically balanced scripts. This paper details our methodology for data collection, annotation, and quality control, which involved partnerships with four African academic and community organizations. We provide a detailed statistical overview of the dataset and discuss its potential limitations and ethical considerations. The WAXAL datasets are released at https://huggingface.co/datasets/google/WaxalNLP under the permissive CC-BY-4.0 license to catalyze research, enable the development of inclusive technologies, and serve as a vital resource for the digital preservation of these languages.
Despite strong performance in data-rich regimes, deep learning often underperforms in the data-scarce settings common in practice. While foundation models (FMs) trained on massive datasets demonstrate strong generalization by extracting general-purpose features, they can still suffer from scarce labeled data during downstream fine-tuning. To address this, we propose GeLDA, a semantics-aware generative latent data augmentation framework that leverages conditional diffusion models to synthesize samples in an FM-induced latent space. Because this space is low-dimensional and concentrates task-relevant information compared to the input space, GeLDA enables efficient, high-quality data generation. GeLDA conditions generation on auxiliary feature vectors that capture semantic relationships among classes or subdomains, facilitating data augmentation in low-resource domains. We validate GeLDA in two large-scale recognition tasks: (a) in zero-shot language-specific speech emotion recognition, GeLDA improves the Whisper-large baseline's unweighted average recall by 6.13%; and (b) in long-tailed image classification, it achieves 74.7% tail-class accuracy on ImageNet-LT, setting a new state-of-the-art result.
Recent speech foundation models excel at multilingual automatic speech recognition (ASR) for high-resource languages, but adapting them to low-resource languages remains challenging due to data scarcity and efficiency constraints. Full-model fine-tuning is computationally expensive and prone to overfitting, while parameter-efficient methods like LoRA apply adaptation uniformly across layers, overlooking internal representations thus compromising effectiveness and efficiency. We analyze multilingual ASR models and reveal a U-shaped adaptability pattern: early and late layers are language-specific and require more adaptation, while intermediate layers retain shared semantics and need less. Building on this observation, we propose DAMA, a Depth-Aware Model Adaptation framework that allocates adaptation capacity according to each layer's role. DAMA also introduces Singular Value Decomposition (SVD)-based initialization to constrain adaptation and preserve the U-shaped pattern, as well as a frozen middle-layer basis for further efficiency. Evaluated on 18 low-resource languages across two benchmark datasets, DAMA matches or surpasses state-of-the-art accuracy with 80% fewer trainable parameters, achieves a 29% error reduction under extreme data scarcity, and significantly improves memory, training time, and computational efficiency over baselines. These results highlight the benefits of structure-aware adaptation for efficient, scalable multilingual ASR.
This work presents EmoAra, an end-to-end emotion-preserving pipeline for cross-lingual spoken communication, motivated by banking customer service where emotional context affects service quality. EmoAra integrates Speech Emotion Recognition, Automatic Speech Recognition, Machine Translation, and Text-to-Speech to process English speech and deliver an Arabic spoken output while retaining emotional nuance. The system uses a CNN-based emotion classifier, Whisper for English transcription, a fine-tuned MarianMT model for English-to-Arabic translation, and MMS-TTS-Ara for Arabic speech synthesis. Experiments report an F1-score of 94% for emotion classification, translation performance of BLEU 56 and BERTScore F1 88.7%, and an average human evaluation score of 81% on banking-domain translations. The implementation and resources are available at the accompanying GitHub repository.
Spoken question-answering (SQA) systems relying on automatic speech recognition (ASR) often struggle with accurately recognizing medical terminology. To this end, we propose MedSpeak, a novel knowledge graph-aided ASR error correction framework that refines noisy transcripts and improves downstream answer prediction by leveraging both semantic relationships and phonetic information encoded in a medical knowledge graph, together with the reasoning power of LLMs. Comprehensive experimental results on benchmarks demonstrate that MedSpeak significantly improves the accuracy of medical term recognition and overall medical SQA performance, establishing MedSpeak as a state-of-the-art solution for medical SQA. The code is available at https://github.com/RainieLLM/MedSpeak.
Recent advances have demonstrated the potential of decoderonly large language models (LLMs) for automatic speech recognition (ASR). However, enabling streaming recognition within this framework remains a challenge. In this work, we propose a novel streaming ASR approach that integrates a read/write policy network with monotonic chunkwise attention (MoChA) to dynamically segment speech embeddings. These segments are interleaved with label sequences during training, enabling seamless integration with the LLM. During inference, the audio stream is buffered until the MoChA module triggers a read signal, at which point the buffered segment together with the previous token is fed into the LLM for the next token prediction. We also introduce a minimal-latency training objective to guide the policy network toward accurate segmentation boundaries. Furthermore, we adopt a joint training strategy in which a non-streaming LLM-ASR model and our streaming model share parameters. Experiments on the AISHELL-1 and AISHELL-2 Mandarin benchmarks demonstrate that our method consistently outperforms recent streaming ASR baselines, achieving character error rates of 5.1% and 5.5%, respectively. The latency optimization results in a 62.5% reduction in average token generation delay with negligible impact on recognition accuracy